Policy Learning for Continuous Space Security Games using Neural Networks
نویسندگان
چکیده
A wealth of algorithms centered around (integer) linear programming have been proposed to compute equilibrium strategies in security games with discrete states and actions. However, in practice many domains possess continuous state and action spaces. In this paper, we consider a continuous space security game model with infinite-size action sets for players and present a novel deep learning based approach to extend the existing toolkit for solving security games. Specifically, we present (i) OptGradFP, a novel and general algorithm that searches for the optimal defender strategy in a parameterized continuous search space, and can also be used to learn policies over multiple game states simultaneously; (ii) OptGradFP-NN, a convolutional neural network based implementation of OptGradFP for continuous space security games. We demonstrate the potential to predict good defender strategies via experiments and analysis of OptGradFP and OptGradFP-NN on discrete and continuous game settings.
منابع مشابه
Handling Continuous Space Security Games with Neural Networks
Despite significant research in Security Games, limited efforts have been made to handle game domains with continuous space. Addressing such limitations, in this paper we propose: (i) a continuous space security game model that considers infinitesize action spaces for players; (ii) OptGradFP, a novel and general algorithm that searches for the optimal defender strategy in a parametrized search ...
متن کاملProposing A Distributed Model For Intrusion Detection In Mobile Ad-Hoc Network Using Neural Fuzzy Interface
Security term in mobile ad hoc networks has several aspects because of the special specification of these networks. In this paper a distributed architecture was proposed in which each node performed intrusion detection based on its own and its neighbors’ data. Fuzzy-neural interface was used that is the composition of learning ability of neural network and fuzzy Ratiocination of fuzzy system as...
متن کاملProposing A Distributed Model For Intrusion Detection In Mobile Ad-Hoc Network Using Neural Fuzzy Interface
Security term in mobile ad hoc networks has several aspects because of the special specification of these networks. In this paper a distributed architecture was proposed in which each node performed intrusion detection based on its own and its neighbors’ data. Fuzzy-neural interface was used that is the composition of learning ability of neural network and fuzzy Ratiocination of fuzzy system as...
متن کاملStable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کامل